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ABSTRACT i" ,- /-

In this paper,j we consider: inequalities of t-G form ",.

-equals 0 or 1, and is a positive

integer. We give necessary and sufficient conditions for ...

such inequalities to define facets of the set covering

polytope associated to a 0,1 constraint matrix A. These

conditions are in terms of critical edges and critical

cutsets defined in the bipartite incidence graph associa-

ted to A, and are very much in the spirit of the work of

Balas and Zemel on the set packing problem where similar

notions were defined in the intersection graph of A.

Furthermore, we give a polynomial characterization of a

class of 0,1 facets defined from chorded cycles induced

in the bipartite incidence graph. This characterization

also yields all the 0,1 liftings of odd-hole inequalities

for the simple plant location polytope.
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1. INTRODUCTION

Let A be an mxn matrix with 0,1 elements. The convex

hull of the solutions to

Ax < 1 J (1)
x. E {0,1} j = 1,...,n

has been widely studied in the 1970's see e.g. Fulkerson

(1971), Padberg (1973), Nemhauser and Trotter (1974),

Trotter (1975), Chvatal (1975), Balas and Padberg (1976),

Wolsey (1976), Balas and Zemel (1977). This polytope is

known as the set packing polytope and we denote it by

P(A).

The set covering polytope C(A) is the convex hull

of the solutions to

Ax > 1
(2)

x E {0,1} j = 1,...,n. J

The facial structure of C(A) has received consider-

able attention only recently, e.g. Balas and Ng (1984, 1986), Con-

forti, Corneil and Majoub (1984), Sassano (1985). Related work

involves the use of both the polytope C(A) and an objective function

to derive cutting planes as proposed by Balas (1979, 1980), Balas

and Ho (1980).
This time lag between the study of P(A) and C(A)

may appear surpising considering the practical import-

ance of the set covering problem. A possible explanation
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is that several key concepts for the study of the set pack-

ing polytope P(A) did not seem to be transferable to the

covering problem. In this paper, we explore such possibili-

ties. We concentrate on valid inequalities of the form

Y x. < (X (3)
jeS 3 -

for the set packing problem and

I x. > (4)

jeS

for the set covering problem, where S C {1,...,nl and a,

are positive integers. In other words, we consider linear

inequalities where the coefficients of the variables x.

for j = 1,...,n, are equal to 0 or to 1.

*. The notions of critical edges and critical cutsets

that were introduced by Chvatal (1975) and Balas and Zemel

(1977) for the set packing problem can also be defined -

with respect to another graph - for the set covering pro-

blem. Chvatal used critical edges to give a sufficient

condition for the inequality (3) to define a facet of

P(A). Sassano (1985) showed that the same condition holds

for the set covering problem, provided the new framework

is used. In section 2,3 and 4 we parallel the results of

Balas and Zemel (1977). In particular we show in section

2 that the sufficient condition of Sassano is not neces-

sary. In section 3 we give a necessary condition in terms

of critical cutsets but we show that it is not sufficient.

Finally, in section 4, we give a necessary and sufficient.,Y

condition for (4) to define a facet of C(A).

In section 5, we investigate set covering problems
."
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that have a given inequality (4) as a facet. In particular
we consider a-maximal 0,1 matrices A,where maximality

refers to the property that changing any element of A from

0 to 1 would render the inequality (4) invalid for C(A).

For this class of matrices the sufficient condition of

Sassano is also necessary. This is to be related t the

0,1 facets of the simple plant location polytope which are

generated from a-maximal matrices, see Cho, Padberg and Rao

(1983). For these facets, it has also been proved that the

condition of Chvatal is necessary and sufficient, see Cor-

nuejols and Thizy (1982).

Square matrices of odd order with exactly two ones

per row and per column are at the hart of the polyhedral

theory of set packing and set covering problems. Define

these matrices as odd holes. If A does not contain an odd

hole as a submatrix, then P(A) = {x: Ax < 1, 0 < x < 11

and C(A) = ix: Ax 1, 0 < x < 1}. When these equalities

do not hold, the facets associated with odd holes are of

particular importance. In section 6, we give a polynomial

characterization of all the a-maximal matrices arising from

odd holes.

A .I
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2. CRITICAL EDGES

For the set packing problem, a useful notion has been

that of the intersection graph of a 0,1 matrix A. It is

defined as having a node for each column of A and an edge

for each pair of nonorthogonal columns. It is well known

and easy to check that the feasible solutions of the set

packing problem (1) are in one-to-one correspondence with

the node packings of the intersection graph of A.

Given a graph G, let c(G) be the maximum cardinality

of a node packing in G. An edge of G is said to be critical

if ct(G\ e) > a(G), where G\ e denotes the graph obtained

from G by deleting the edge e.

THEOREM 1 (Chvatal 1975). Let G = (V,E) be the in-

tersection graph of a 0,1 matrix A. Let E* C E be the set

of the critical edges of G. If G* = (V,E*) is connected,

ihen

n

I x. < a(G)
j=1 3

defines a facet of the set packing polytope P(A).

For the set covering problem, the intersection graph

of A appears to be less appropriate for the study of C(A).

Rather, we define the bipartite incidence graph of a 0,1

matrix A as follows. The graph B = (V,U,E) has a node

i E U for each row of A, a node j E V for each column of

A and an edge between nodes i E U and j E V if and only

if a = 1 in the matrix A. Consider the set T C U. A
1J

set S C V is called a cover of T if every i e T is adja-

cent to at least one node of S. The feasible solutions

0 V
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of the set covering problem (2) are in one-to-one corres-

* pondence with the covers of U.

Given the bipartite graph B = (V,U,E) and a set T CU,

let a(T) be the minimum cardinality of a cover of T. Mo-

reover denote by G* = (V,E ) the critical graph associated

to B having node set V and edge set (critical edges) de-

fined as:

E ={(viv j ) J (U \ Uij) < 6(U)

where U.. C U is the set of the common neighbors of v. and1J - 1

v.. We assume that a(O) = 0.

THEOREM 2 (Sassano 1985). Let B = (V,U,E) be the bi-

partite incidence graph of a 0,1 matrix A. Let G* = (V,E*)

be the associated critical graph. If G* is connected, tzen

n

x. > (u)
j=l -

defines a facet of the set covering polytope C(A).

Observe that, alternately, we denote by (A) the co-

vering number of the 0,1 matrix A. In other words (A)-=3(U).

For the set packing polytope, the sufficient condition

given in Theorem 1 is not necessary as was pointed out by

Balas and Zemel (1977). A similar fact can be proved for

the set covering polytope and the sufficient condition of

Theorem 2.

THEOREM 3. Let B = (V,U,E) be the bipartite incidence

graph of a 0,1 matrix A and assume that the inequality:
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n
I x. > S(A)

j=1  3

induces a facet of C(A)

Then the critical graph G* = (V,E*) is connected for some

choices of A and disconnected for other choices.

PROOF. We give an example where G* is connected and

one where G * is disconnected.

First consider the matrix:

1 2 3

1 1 1 0

A = 2 0 1 1

3 1 0 1

and the associated incidence bipartite graph

B:

U 3

Any edge (vi,vk) is critical as t(U) = 2 and B(U\ Uik)=1

where the set U k is defined as above. Therefore G* is
jk

the complete graph on 3 nodes and thus is connected. Of

3
course x. > 2 is a facet by Theorem 2.

j=1 3

Now consider the following 0,1 matrix
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1 2 3 45 67 8 910

1 11 0 00 00 01 1

2 0 1 1 0 0 1 0 0 0 1

3 00 11 0 1 1 00 0

4 0 0 011 0 110 0

A= 5 1 0 0 0 1 0 0 1 1 0

6 1 1 000 11 0 00

7 0 1 100 01 10 0

8 00 1 10 00 11 0

9 00 0 11 00 01 1

10 1 0 0 0 1 1 0 0 0 1

And the associated incidence bipartite graph displayed in

figure 1.1

U, U

USS

B = (V,U,E) 1U

V2.

4.V -
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in B; so a(U) > 3. Furthermore the set {VV2,V4 is a cover

V of U).

Now consider the critical graph G = (V,E ) associated

to B and, for each pair vjIVk of nodes of V denote, as above,

by Ujk C U the set of common neighbors to vj and vk. The

edge (vj ,vk) belongs to E* if and only if S (U\ Ujk) < 2.

if a UjkI < 1, then IU\ UjkI > 9. But then (U\ Ujk) > 2

as each node v E V has degree 4. So, in this case, (vjfvk)

is no- critical.

Now assume that IUjk I > 2. Actually the graph B has

the property that lU jki < 2. So we get Ujk = 2. We di-

stinguish two cases.

(a) 1 <j, k < 5 or 6 < j, k < 10; jUjkl = 2.

Then we will show that (vjvk) is a critical edge.

By symmetry, we can assume w.l.o.g. that j = 1 and

k = 2. Then U 12 = {ulU 6 }. The set {v3 ,v5 } is a cover of

U\ U 12 and therefore B(U\ U 12 ) = 2.

This proves that (vj,vk) is critical.

(b) 1 < < _ 5 and 6 < k < 10; tUjkl = 2.

Then we will show that (v.,vk) is no, critical.

By symmetry, only two situations can occur depending

on whether Ujk n {u1 ,...,u 5} is even or odd. Namely, we

can assume w.l.o.g. that either j = 1, k = 6 or j = 1,
k = 10. Now we study these two subcases.

(bl) j = 1 and k = 6.

., In U\ U16  there are five nodes to cover in the set

-16'
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{ul,...,u 5 } and three in the set {u 6 ,...,Ul 0 }. Since each
.node v. e V covers two nodes from each set, there is no

cover of cardinality 2. So (v,v k ) is not critical.

(b2) j = 1 and k = 10.

We have U\ Ujkl = 8. So, in order to cover U\ Ujk

with only two nodes of V, we must use two nodes of V that

cover four nodes of U\ U.k each, i.e. these two nodes must

be chosen from the set {v3 ,v4 ,v7 ,v8 }. But any two of these

nodes have at least one common neighbor, and therefore do

not cover U\ U So (v.,v k  is not critical.

We just proved that G* = (V,E *) is the union of two

node-disjoint cycles of length five, since only case (a)

gives tise to critical edges.

10
It remains to show that x. > 3 induces a facet

j=1 3 -

of C(A). It is valid since (U) = 3. In addition, the 10

solutions defined by the columns of the matrix

1 1 0 1 0

0 1 1 0 1

1 0 1 1 0 0
0 1 0 1 1

1 0 1 0 1

1 1 0 1 0

0 1 1 0 1

0 1 0 1 1 0

0 1 0 1 1
1 0 1 0 1

* i'- " , -" ." -" : -" "-" ' ,.,- - .. ,.> '-]- .,...,.. .. -. .. -.4: :" - - .- % b < ,-' .
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all satisfy the constraints Ax >1 and verify the inequality

10
I x. > 3 with equality. Since the above matrix is nonsingu-

j=1 3 -

lar (it is defined using a nonsingular 5x5 circulant matrix),

the 10 points that it defines are affinely independent.

10
Thus Z x. > 3 definesa facet of C(A). 0

j=1 ] -

3. CRITICAL CUTSETS

A useful concept in the study of the set packing pro-

blem is that of critical cutset. A cutset F = (S,S) C E of
.9- a graph G = (V,E) is the set of all the edges joining nodes

in S with nodes in the complement set S = V\ S. Both S and

S are assumed to be nonempty.

A cutset is critical if c(G\ F) > ct(G), where G\ F is the

graph obtained from G by removing all the edges of F.

THEOREM 4 (Balas and Zemel 1977). Let G be the inter-n
section graph of a 0,1 matrix A. If x. < a(G) induces

j=1 -
" a facet of P(A), then every cutset of G is critical.

We introduce a similar notion for the set covering

problem. Consider the bipartite incidence graph B = (V,U,E)

of a 0,1 matrix A. Let S be a nonempty proper subset of V

and let US C U be the set of all the nodes adjacent to at

least one node in S and one node in S = V\ S. The set US
is called a cutoet of the bipartite incidence graph B,and
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in fact,B becomes disconnected if U and the incident edges

are removed from B. The cutset U induced by S and S is said

to be critical if a(U\ Us ) < (U).

THEOREM 5. Let B = (V,U,E) be the bipartite incidence
n

graph of a 0,1 matrix A. If [ x. > 6(U) induces a facet
j=1 I

of C(A), then every cutset of B is critical.

PROOF. Assume not. Then there exists a subset S C V

such that S,S 3 J and f(U\ US) = a(U) where US is the cut-

set defined by S. Let U C U be the set of nodes of B ad-

jacent to S but not to S and U2 C U those that are adjacent

to S but not to S. Then a(U\ US) = a(U1)+a(U 2 ). Thus the

inequality x. > (U) can be written as the sum of the
]EV

two inequalities x > (UI) and [ x > B(U2 ). In ad-
jES 3 2e

dition, each of these inequalities is valid. Therefore

Z x. > (U) does not induce a facet of C(A). 0
jEV -

The necessary condition of Theorem 4 given by Balas

and Zemel for the set packing problem is not sufficient

as they pointed out themselves. Similarly, for the set

covering problem, the necessary condition of Theorem 5 is

not sufficient. This is shown next.

THEOREM 6. Let B = (V,U,E) be the bipartite incidence

graph of a 0,1 matrix A. Assume that every cuttet is
n

critical and consider the valid inequality x. > (U).
J=1 -

Then this inequality does not always define a facet of

C(A).

PROOF. Consider the 10x10 matrix A introduced in the
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proof of Theorem 3 and add to it the row (0010111111). We

call A' this 11xi0 matrix and B'=(V',U',E') its bipartite

incidence graph.

First we show that every cutset of B' is critical.
10

Using Theorem 5 and the fact that I x. > 3 is a facet
j=1 I

of C(A), we obtain that, in B', every cutset that contains

the node u 1 1 is critical. Now consider any cutset Us of B',

that does not contain u 1 1. W.l.o.g. assume that v 1 0 e S.

Since uli g US, we must also have {v 3 ,v5 ,v6 ,v7 ,v8 ,v9 } C S.

Now, if {vlv 2 } f S 1 n, then {v 3 ,v 5 } covers U\ Us and the

cutset is critical. So the last case to consider is when

S = {v4 }. Then {vl,v 2 } covers U\ U and again the cutset4 2 S
is critical. So all the cutsets of B' are critical.

10
Now we show that I x. > 3 does not induce a facet

j=1 J
of C(A'). Consider the 10 solutions introduced in the proof

10
of Theorem 3 as satisfying I x. = 3 for the problem C(A).

j=1 3

Note that one of these solutions does not satisfy the

constraint generated by the new row 11 in matrix A'. In
10

addition, no other feasible solution satisfies Y x. = 3.
j=1 3

Since only nine affinely independent points satisfy this
10

equation, the inequality I x. > 3 does not induce a facet
j= 3 -

of C(A'). 0

4. A NECESSARY AND SUFFICIENT CONDITION

Let A be a 0,1 matrix with column set V and row set U.

In this section we consider general 0,1 inequalities,namely
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inequalities of the form

xj > B, (5)

jES

where S C V and 8 is a positive integer. The main result,

stated in Theorem 9, is a necessary and sufficient condi-

tion for such inequalities to induce facets of C(A).

It will be convenient to assume in this section that

A has at least two ones per row, thus guaranteeing that

C(A) is a polytope of full dimension.

Let DS be the submatrix of A induced by a set S of

columns of A and by the rows i such that aij = 0 for

every j E S = V\ S. This operation is known as deleting

the column set S from the 0,1 matrix A. Equivalently,con-

sider the bipartite incidence graph B = (V,U,E) associa-

ted with the matrix A and let B(S) be the subgraph of B

induced by the node set S U R where R C U contains the

nodes that have no neighbor in S. Then B(S) is the bi-

partite incidence graph of DS .

THEOREM 7. If the inequality (5) defines a facet of

C(A), then 8 = a(D s ) and (5) defines a facet of C(D S).

PROOF. Consider a feasible solution such that

x. = D ) and x. = 1 for every j E S. Since (5)jes ]

is a valid inequality, this feasible solution implies

(D S ) > a. Now, if a < (D S), then no feasible solution

can satisfy (5) with equality, contradicting the fact

that (5) is a facet. This shows = 6(D S).

To show that (5) defines a facet of C(D S), con-

sider n affinely independent solutions {kkx1<k<n show-s1ider
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ing that (5) is a facet of C(A). Project these n points in
the space x. =0 for j E S. The n projections still satisfy

A3

(5) with equality. In addition, if the projected space had

dimension less than SI-i, then the space generated by
{ik}1<k<n would have dimension less than n-1. So the n pro-

jections define an affine space of dimension ISI-i. This

shows that (5) defines a facet of C(D s ) provided that this

V polyhedron has dimension JSj. This is indeed the case as a

consequence of our assumption that A contains at least two
ones per row and the definition of Ds .

It is interesting to relate Theorem 7 to similar pro-

perties for the set packing problem. Given the 0,1 matrix

A, denote by AS the submatrix of A induced by a subset S

of the columns of A and by G(S) the intersection graph as-

sociated with the matrix A . Consider the inequality

x. < a , (6)
jeS I

for some positive integer a. If the inequality (6) defines

a facet of P(A), then a = a(G(S)) and (6) defines a facet

of P(AS ).

Unlike for the set packing problem, the matrix D
S

needed in Theorem 7 does not usually contain all the rows
S Sof U. In fact, it is possible to have (DS) < B3(A as

shown by the following example.

I..S
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S

1 0

R 0 11 0
1 0 1

A=
1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

3
The inequality I x. > 2 defines a facet of C(A). The matrix

j=1

D is the 3x3 submatrix of A induced by the row set R and the

column set S. Note that (Ds ) = 2 and a(A s ) = 3.

For the set packing problem, Balas and Zemel (1977) gave

a necessary and sufficient condition for a facet of P(AS) to

also define a facet of P(A).

THEOREM 8 (Balas and Zemel 1977). Let A be a 0,1 matrix

and AS the submatrix induced by a subset S of the columns of

A. Assume that

x. < a(G(S)) (7)jeS 3 -

defines a facet of P(AS). Then (7) defines a facet of P(A)

if and only if, for every j g S, the cutset (S,{j}) of

G(S u {j}) is not critical.

Similalrly, the following theorem gives a necessary

and sufficient condition for a facet of C(D s ) to define a

facet of C(A). Recall that B(S) denotes the bipartite in-

cidence graph of DS.

THEOREM 9. Let A be a 0,1 matrix and D S the Somar'x

1111 io '
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of A induced by a column set S and the rows i such that

aij = 0 for every j 9 S. Assume that

S x. > 8 (Ds )  (8)

jES

defines a facet of C(D s ). Then (8) defines a facet of C(A)

if and only if, for every j 9 S, the cutset of B(S U{j})

induced by {j} and S is not critical.

PROOF. Assume that (8) defines a facet of C(A) and

consider j 9 S. There must exist a feasible solution such

that x. = 0 and Y x. = (D S ), otherwise fewer than n

affinely independent points would satisfy (8) with equa-

lity. This shows that it is possible to cover all the rows

of DS U fj with only (D S ) columns. In other words, the

cutset of B(S U {j}) induced by{j}and S is not a critical

cutset.

Conversely, assume that, for every j g S, the cut-

set of B(S U {j}) induced by{j}and S is not critical.

This means that it is possible to cover all the rows of
s o f j with a solution such that x= 0 and xi=6(D S).

ieS

To make this solution feasible for C(A) it suffices to

%.. set xk = 1 for every k 9 S such that k j. Denote by
y such a solution to C(A). Note that, if ej denotes

the unit vector such that x =1, then y + e3 is also

a feasible solution and satisfies (8) with equality.
kFinally, let {x }1<k<Si be a set of iSi affinely in-

dependent solutions such that xk = I3(DS ) (such so-
ic S

lutions exist since (8) defines a facet of C(D S )), and
k

set x = 1 for every j q S. We claim that the points

O-elr r
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y ," y j+ ej and x kgenerate an affine space of dimension

n-i. To see this, subtract y~from yJ + eJ. The n-ISI re-

suiting unit vectors and the jSI vectors x kare linearly

independent. This completes the proof. 0

5. FACET-MINIMAL AND a-MAXIMAL 0,1 MATRICES

Given a 0,1 matrix A, we denote by L(A) the dimension

of the affine space generated by the covers of A of cardi-

nality S(A). We say that an mxn matrix A with 0,1 elements

is facet-minimal if L(A) = n and, for every mxn matrix D

with 0,1 elements such that D < A, then L(D) < L(A). This

definition yields the following result.

PROPOSITION 1. Let A be a 0,1 matrix. The inequality
n
Sx, > a(A) defines a facet of C(A) if and only if t~zere

Lj=, l

exists a facet-minimal matrix A msuch that A rp< A and

m In

i(A m) = A)

We say that a 0,1 matrix A is a-maximal if, for every 0,1

matrix D of the same dimensions as A such that D > A,then

a CD < (A). In other words, A is a-maximal if, turning

* into a 1 any entry of A which is currently 0 decreases

the covering number.

PROPOSITION 2. Let A be a 0,1 matrix and Zet A Mbe

;M

a a-maximaL matrix such that A M > A and a3(AM) = 3(A).
n

ifthe inequality Z x. > a(A) induces a facet of C(A),
j=1 j

then it also induces a facet of C(D) for every 0,1 matrix

D such that A < D < A y,

p - W ,U.* - . ~ - L. . -. . .~* ..- ..k
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PROOF. The same n affinely independent solutions that
n

show that I x. > 8 (A) defines a facet of C(A) can also be
j= 1 -

used for C(D). 0

A PROPOSITION 3. Let A be a a-maximal 0,1 matrix con-

taining at least one zero per row and let B = (V,U,E) be

the bipartite incidence graph of A. Let G= (V,E*) the

critical graph associated to B. The inequality

n
Y x. > S(A)

j=1 3

defines a facet of the set covering polytope C(A) if and
= E*

on 7~ if the graph G* =(V,E ) is connected.

PROOF. The fact that the condition is sufficient is

stated in Theorem 2. So we have to prove that the condi-

tion is necessary.

Consider two nonorthogonal columns j and k. Let

u. E U be one of the common neighbors of v. and vk. Let

aiz be a zero element of row i. Turning this element into

a 1 would decrease the covering number of A. Thus, we also

have B(U\ {ui}) < (U). This shows that (v,v k) G E

To prove that G = (V,E*) is connected, it suffices to
n

note that B is connected (otherwise . x. > f3(A) would be
j=1 -

the sum of at least two valid inequalities and, therefore,

would not induce a facet). 0

It may be interesting to note that the concept of

--maximal matrix is also a central notion for the facial

description of the simple plant location polytope, These

-i matrices were introduced by Cho, Padberg and Rao (1983)

d1%.0 I
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under the name of maximal pd-adjacency matrices.

The simple plant location polytope is the convex full

of the solutions to

n
Iy. 1 for i =1,.m

j=1 LJ

+ X.< 1 for i=1,...,m and j=1,...,n
Yij + x3-

Yij ' xj 1 }

Let G be the intersection graph associated with this 0,1

constraint matrix. Necessary and sufficient conditions for

a 0,1 inequality to define a facet of the simple plant lo-

cation polytope were given by Cho, Padberg and Rao (1983)

and Cornuejols and Thizy (1982). Let I C

J C r{1,...,n} and let A be a 0,1 matrix with rows indexed

by I and columns indexed by J. The inequality

S ai.y. + [ x. < a (9)
iEI jeJ 1 jeJ -

induces a facet of the simple plant location polytope if

and only if

(i) the matrix A is a-maximal and has at least two ones

and one zero per row, where a = IIlJl-a;
(ii) a is the maximum size of a node packing in the sub-

graph of H induced by the nodes that have a positive

coefficient in (9).

It was shown that A is a-maximal if and only if,

in the graph K = (V,E) defined above, the subgraph K* =

= (V,E*) induced by the critical edges of K is connected.

(Here, the notion of critical edge refers to node packing).

v%

~~X
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6. ODD HOLES AND THE ASSOCIATED a-MAXIMAL MATRICES

The 0,1 matrices of odd order with exactly two ones

per row and per column play a central role in the poly-

hedral theory of packings and coverings. We call such

matrices odd holes.

Let A be a 0,1 matrix. If A does not contain an odd

hole as a submatrix, then it is well known that C(A) =

{x: Ax > 1, 0 < x < 1}, in other words no additional

facet is required in the description of C(A). See Ful-

kerson, Hoffman and Oppenheim (1974). On the other hand,

consider the case where A is an odd hole of order n.Then

the inequality

n > n+1 (10)
j=1 3 2

defines a facet of C(A). In fact, the same statement

remains true for any matrix A satisfying H < A < H*

where H is an odd hole and H is an n+1 - maximal matrix
*2

with the property that H > H.Note that H is facet-minimal.

In this section we characterize all such matrices H*.

From analgorithmic point of view,qiven a square 0,1 ma-

trix A of odd order and an odd hole H < A, our charac-

terization allows us to decide in polynomial time whe-

ther the inequality (10) is valid and yields a facet of

C(A). Of course, if only A is given, finding H is NP-

hard in general as it amounts to finding a Hamilton

cycle in a bipartite graph. However, for the simple

plant location polytope mentioned in the previous sec-

tion, odd holes can be generated from any odd sets I

and J such that II = IjI. Then our characterization
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provides a polynomial algorithm for performing sequential

liftings of the Yij variables, i e I and j e J. See Pad-

berg (1973) for an introduction to sequential variable-
liftings. Cornuejols and Thizy (1982) gave all the - l

2
maximal matrices H* for n = 3, 5 and 7. They were derived

using a facial description of the convex hull of the odd hole

liftings in the simple plant location polytope, see Thizy (1981).

As in earlier sections, we find it useful to work

on the bipartite incidence graph B = (V,U,E) of the 0,1

matrix A. We assume that IVI= JUI = n and that we have a

subset EH C E with JEH1 = 2n such that the graph H =

(V,U,EH) is a cycle. We call the set of edges EC = E \ EH

the chord set of H and each edge e = (vi,u.) E EC a chord

of H. The graph B is called a chorded cycle spanned by H.

In the remainder of this section we assume that n> 3

is an odd integer. We say that H is an odd cycle. More

generally, we say that a cycle of the bipartite graph B

is odd if its number of edges is 2k where k is odd.

We say that a chord H is odd if it induces two odd

cycles in H. In other words, the chord eij = (vifu j ) is

odd if each of the two paths of H joining v to u. forms9 J
an odd cycle with eij. If a chord is not odd, it is said

to be even.

Each chord eij = (vi,u j ) induces a partition of the

nodes of V into an even set Eij (vi ) and an odd set 0ij (v.)

defined as follows. Consider the graph obtained from H

by removing u.and the two incident edges. Given vh E V,

let dih be the length (number of edges) of the unique

path from vi to vh in this graph. We define E. (vi) =

{vh E V : dih 0 (mod W and Oij (v1 = {vh EV:d ih-2

(mod 4)}.

-A A
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Note that JE. (vi) = 10 (vi )1+1 when the chord e.. is

odd and JEij (vi)] = 0ij (vi)J-1 when it is even.

Two chords e.. = (v.,u j) and ehk = (Vu) are said
13 1 j ho'k

to be crossing if their nodes vi,Vh" ujouk appear in this

order on the graph H. The two chords are said to be c:"-

paibe if vh E Eij (vi). Equivalently vi  E hk(Vh

EXAMPLE

2'.

13 3
E 31 (v = (v1,v3 1 v5

0 31 Cv)= {v 2 ,v 4

Figure 2

The graph of Figure 2 is a chorded cycle spanned by the

10-cycle H drawn with solid edges. The chords e3 1 and e5 3

are both odd. They are crossing as v3 ,v5,u 1 u 3 appear in

this order on H. Finally they are compatible as v5 E E3 1 (v3).

The chord set EC of a chorded cycle B = (V,U,EH UEc

is said to be compatible if

(i) every chord is odd, and

(ii) every pair of crossing chords is compatible.

THEOREM 10. Let A be a 0,1 matrix and Zet B=(V,U,E)

. 'no'.enoc bipartite giraph,. A.,oume tVza J fV=UI=n

N. .
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io od and that there exists EH C E with EHI = 2n such

tr:at H = (V,U,EH ) is a cycle. Let E. = E \ EH be the set

of ch ords of H. Then the inequaZity

n > n + 1 ( 1
j=l 3-2

es a facet of C(A) if and only if the chord set EC

us compatible.

Before we prove the theorem, we note a property of
pairs of odd crossing chords. Given a chord e ij=(vi,vj),

consider a partition of the nodes of U into an even set

and an odd set similar to what we did for the set V.

In the graph obtained from H by removing vi and the two

incident edges, we define d k to be the length of the

unique path joining uj to any other node uk E U. Then

we define

E. (u.) = (u E U :d - 0 (mod 4)1 and

0.. (u-) = (u E U : d 2 (mod 4).
1J Uk jk

Now assume that e = (vi,u j) and ehk = (vhuk)

are two odd crossing chords. We claim that

vh E E ij (vi) if and only if uk E Eij (u.) (12)

To see this, remember that, since e.. and ehk are

crossing, the nodes vi,vh ,u. and uk appear in this order

on the cycle H. So, the edges of H can be partitioned

into four paths joining vi to vh ' vh to uj, ujto uk and

M.-1. ., v .'.'-.. .,,"v.,_. . . . . .. ". ,. ,.:'.".,. . . -" -'."." -". .- "-" -'" -- " '- ". " . 7
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uk to V i Let dih dhjldjk and dki be the respective lengths

of these paths. Since eij and ehk are odd chords, we have

d + d + 1 = 2w, where w is an odd integer,
ih hj+

and dhj + djk + 1 = 2z, where z is odd.

So dih =djk + 2(w-z), i.e.

d. d. (mod 4).
ih jk

This proves the claim (12).

PROOF OF THEOREM 10. Assume that the chord set EC is

not compatible. First assume that (i) does not hold, say

eij = (vi,u.) is an even chord. Then E ij (v i ) is a cover
n-1

of cardinality , contradicting the validity of in-

equality (11). Now assume that every chord is odd but

that (ii) does not hold for some pair of crossing chords

eij= (v1iuj), ehk = (Vh,uk). Let V1 and U1 be the nodes

of V and U respectively in the path from vi to u. which

contains uk. Similarly let V 2 and U2 be the nodes of V

and U in the path from v. to uj which contains vh. Note

that v E V I and V 2, and u. E U1 and U Consider the

path P = (uk,vZum,...,vi ) from uk to Vi which does not

contain u. and vh (see Figure 3.) Define D1 to be the

minimum cover of UI by nodes of V I that contains the two

nodes of V1 adjacent to the node um on P. Since the two

chords ei. and ehk are not compatible, vh E 0ij (vi).

Because the chord ehk is odd, this implies that vz EOij (vi).

Since we have chosen D1 so that vz E D, we have vi ED .

Now define D2 to be a minimum cover of U2 by nodes of V2

r d' .*.>*~ v 1 .*I
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Figure 3.

that contains both vi and vh. The chord e ijbeing odd, we

have ID1 1 = (IV 1I+1)/2 and ID2 1 = (IV21+1)/2. Now define

D as D = D 2 U D2\ {Vz}. As um and uk are covered by nodes

of D, it is clear that D is a cover of U. In addition

IDI = ID1 +ID 2 1-2 as v, has been removed and vi appears

in both D1 and D2. So IDI = (IV1 1 +IV 2 1-2)/2. Since

IVl1 +IV 2 1 = n+1, we have IDI = (n-I)/2 and therefore

the inequality (11) is not valid, a contradiction. So the

compatibility of the chord set is a necessary condition

for (11) to be a facet.

Now we show that it is also sufficient. We only have

to prove that (11) is valid, i.e. we want to show that,if

D is a minimum cover, then IDI = (n+1)/2. Obviously, D is

still a cover in the graph obtained from B by removing

the set of chords E = {(v,u) E E :v 9 D}. So in the re-

mainder we assume that we work in such a reduced graph.
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Let eij = (vi,uj) be a chord such that the subgraph in-

duced by one of the two paths of H joining v. to u., say

P, is a chordless cycle.

Consider all chords ek = (v£,uk) such that uk E P.

Note that, since eij and e k are crossing chords, uk e

Eij (uj ) as a consequence of claim (12). In other words,

no node of P n 0ij (u.) is covered by a node not in P.

Now consider all chords e ~k = (v£,uk) such that

v E P. Since eij and e Zk are crossing, vz E P n Eij(vi) .

It follows from these two observations that we can

always find a minimum cover which coincides in P with

E ij (vi). So let us assume that D has this property. Con-

sequently D not only covers P n 0 ij.(u.) but also p n Eij(uj).
So the chords (v,,uk) where uk E p can be removed while

leaving D a feasible cover. Let E2 be this set of chords.

Now we will show the result by induction on n.

Namely we assume that the inequality (11) is valid for

chorded cycles with compatible chord sets having less

than 2n nodes and we prove that it is also valid for

any chorded cycle with compatible chord set having 2n

nodes. To this end, construct a new graph B'=(V',U',E')

from B in the following way. Remove from V and U the

nodes of P except v. and uj, remove from the set E all

the edges of P and the chord sets E and E defined
above. In addition, for each chord (v,,uk) where

IV E P\ {vi}, introduce a new chord (viuk). Let

D'= D n V'. By construction, D' is a cover of U' and

B' is a chorded cycle with compatible chord set. De-

note by q the number of nodes of P n (V\ {vi}). Be-

cause eij is an odd chord, then q is even. Moreover,

V' =n -q and ID'I = IDI-q/2. By the induction hypo-

thesis ID'! > (n-q)+1* Consequently nD > L+_1. 0- 2 2 osq ety II - -. [
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class of 0,1 facets defined from chorded cycles induced in the bipartite
incidence graph. This characerization also yields all the 0,1 liftings of odd-hole
inequalities for the simple plant location polytope.

-A .. - . . '



r.

qY~

2

.4-

V

,4.4


